PHYSICAL REVIEW B 81, 235119 (2010)

Chemical bonding analysis for solid-state systems using intrinsic oriented quasiatomic

minimal-basis-set orbitals

Y. X. Yao, C. Z. Wang, and K. M. Ho

Ames Laboratory-U.S. DOE and Department of Physics and Astronomy, lowa State University, Ames, lowa 50011, USA

(Received 30 March 2010; revised manuscript received 19 May 2010; published 16 June 2010)

A chemical bonding scheme is presented for the analysis of solid-state systems. The scheme is based on the
intrinsic oriented quasiatomic minimal-basis-set orbitals (I0-QUAMBOs) previously developed by Ivanic and
Ruedenberg for molecular systems. In the solid-state scheme, I0O-QUAMBOSs are generated by a unitary
transformation of the quasiatomic orbitals located at each site of the system with the criteria of maximizing the
sum of the fourth power of interatomic orbital bond order. Possible bonding and antibonding characters are
indicated by the single particle matrix elements, and can be further examined by the projected density of states.
We demonstrate the method by applications to graphene and (6,0) zigzag carbon nanotube. The oriented-orbital
scheme automatically describes the system in terms of sp? hybridization. The effect of curvature on the
electronic structure of the zigzag carbon nanotube is also manifested in the deformation of the intrinsic oriented
orbitals as well as a breaking of symmetry leading to nonzero single particle density matrix elements. In an
additional study, the analysis is performed on the Al;V compound. The main covalent bonding characters are
identified in a straightforward way without resorting to the symmetry analysis. Our method provides a general
way for chemical bonding analysis of ab initio electronic structure calculations with any type of basis sets.
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I. INTRODUCTION

Density-functional theory (DFT) (Ref. 1) has been suc-
cessfully applied to electronic structure and total energy cal-
culations in solid-state systems for several decades. For
many systems, the accuracy of the calculations can yield
total energies that can be compared with experimental mea-
surements and are relied on for predictions for complex
structures ahead of experiments. However, in addition to nu-
merical predictions, it would be desirable to have a deeper
understanding of the nature of the chemical bonding in the
systems.

Traditional atomic orbital-based chemical bonding analy-
sis for molecules is usually based on a minimal basis de-
scription of the system, while results based on larger-size
basis sets required for total energy convergence are usually
not as intuitive. In previous work, Hoffmann showed that
orbital-based chemical bonding analysis provides a qualita-
tive understanding of the reaction of molecules on metal
surfaces.” By extending Mulliken’s bonding analysis for
molecules to surface systems, Hoffmann introduced the crys-
tal orbital overlap population (COOP) analysis.>* However,
the COOP analysis assumes that electronic structures are ob-
tained with an implicit minimal-basis-set orbitals, as in ex-
tended Hiickel type calculations.” Andersen developed a
tight-binding (TB) approach with minimal-basis-set orbitals
downfolded from the linear muffin-tin orbital (LMTO)
method, which has been employed for COOP analysis.>”’
Unfortunately, the exact downfolding scheme in the TB-
LMTO method may not be generalizable to non-MTO elec-
tronic structure methods, e.g., the widely used pseudopoten-
tial (PP) method or projected augmented wave (PAW)
method.?~10 Some approaches, e.g., Sanchez’s method based
on projection of wave functions to optimized atomic orbital
basis set, may be used for the COOP analysis in the general
DFT calculations.!! However, since the representation of the
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wave function by the atomic orbitals is not exact, some un-
controlled assumptions are involved in the process. In fact, a
combination of PAW method and TB-LMTO method were
used in the previous applications.®’ Therefore it is desirable
to have an exact downfolding scheme which transforms the
representation of the electronic structure from a large basis
set (for example, plane waves) to a minimal atom-centered
localized orbital basis set so that orbital-based bonding
analysis like COOP can be directly applied.

Recently a scheme for generating an exact representation
of the occupied electronic states of a system by quasiatomic
minimal-basis-set  orbitals (QUAMBO) has  been
developed.'>!> The constructed QUAMBOs exhibit a maxi-
mal similarity to atomic orbitals and provide an excellent
minimal basis set for chemical bonding analysis for molecu-
lar and solid-state systems. Mulliken charge and bond order
analyses based on QUAMBOs have already been performed
for crystalline solids.'>"'> We note that the maximally local-
ized Wannier functions (MLWF) method may also provide
an alternative approach for the exact downfolding of the
electronic structures from general DFT calculations.'® How-
ever, the objective of the MLWF approach is to achieve
maximal localization by means of a unitary transformation of
the Bloch wave functions, so the resultant WFs may not
necessarily be centered on atoms,'®!7 hindering direct appli-
cation to the COOP analysis.

Although the assignment of bond charge or bond order
among atom pairs as performed in Refs. 12—15 is invariant
with respect to the rotation of the orbitals at each atom, the
orbital-resolved bonding analysis is dependent of the orien-
tation of the orbitals.” Therefore intrinsic hybrid orbitals,
e.g., sp> hybrids of carbon atom in diamond structure, would
be a more appropriate choice for the basis set if we want
more detailed orbital-resolved bonding information. Such
hybrid orbital-based COOP analysis has been performed
where the hybrid orbitals have to be constructed prior to the
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bonding analysis by considering the local symmetry of the
atoms in the crystal structures.%’ Nevertheless, an approach
to obtain hybrid orbitals without resorting to local symmetry
analysis is desired for general applications.'® Ivanic and
Ruedenberg recently proposed an automatic scheme based
on QUAMBOs to get the intrinsic, oriented quasiatomic or-
bitals by unitary transformations on the orbitals for each
atom in the molecule to maximize the sum of the fourth
power of the interatomic orbital bond orders.!® The method
has been applied successfully to a number of molecular sys-
tems. In this paper, we generalize this intrinsic oriented
QUAMBO scheme to solid-state systems and provide a gen-
eral approach for chemical bonding analysis in solid-state
systems by first-principles calculations.

The paper is organized as follows. Section II describes the
detailed formalism for generating the I0-QUAMBOs. The
applications of the method and discussions are given in Sec.
111, followed by the summary and conclusion in Sec. IV.

II. METHOD

The detailed theoretical descriptions and technical discus-
sions about how to generate highly localized QUAMBOs
from first-principles wave functions can be found in Refs.
12-15. Hence here we only give a brief introduction to
QUAMBO and aim to provide the formalisms on how to get
the generalized intrinsic oriented QUAMBOs given the
original unrotated QUAMBOs in periodic systems.

Let {QS } be a set of band wave functions from DFT
calculatlons on a solid-state system, a subset C, {¢ |
=1,...,N,} of which are to be exactly reproduced in the
downfolded QUAMBO representation. k is the label for
crystal momentum, and w is the band index. In order to do

that, one can choose Ny QUAMBOs {A,,} corresponding to a
set of Ny atomic orbitals {A,,}. Here i is the atomic site index
and « is the orbital index (e.g., s,p,,py,p;,***) in a unit cell.
The angular momentum characters of the atomic orbitals can
be determined by examining the site-projected angular
momentum-resolved density of states. In general it is re-
quired that Np=N,, i.e., the number of states preserved can-
not be larger than the dimension of QUAMBOSs. Another
coherent set of Bloch wave functions, C(;:{c;/);| n
=1, ... ,NQ—NO}, are constructed in the subspace orthogonal
to the space spanned by C, with the requirement of maxi-
mizing the similarity between the atomic orbitals and result-
ant QUAMBOs.!>!15 Then the Bloch sum of QUAMBO is
obtained by a unitary transformation among the Bloch wave
functions in set C, and Cj, i.e.,

N, No-N,
Iﬁi‘a>=f,~a(2<¢iz| D) + 2 (BEIA% ) >)
pu=1

where f;, is the normalization factor. The real space QUA-
MBO can be obtained by summation over momentum space,

~ 1 .
i) = =2 AL (2)
VN

Here |A) indicates QUAMBO |A;,) in nth unit cell with
displacement vector R,. In real applications we find that
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QUAMBOs usually have some small deviations compared
with the atomic orbitals which manifest effect of the local
environment.

For the purpose of bonding analysis in the paper, QUA-
MBOs should be constructed such that the occupied and
some unoccupied electronic states close to Fermi level (to
capture low energy antibonding states) can be exactly repro-
duced in the representation of QUAMBOs. Mathematically,
for a preserved band wave function |¢';), it can always be
exactly expressed in terms of the Bloch sums of the QUA-
MBOs, ie.,

|¢l;,> = E Cia,;Lk|A~:(a>’ (3)

where C;, i is the coefficient.
The single particle density matrix p can then be expressed
in terms of QUAMBOs

p=2 ful O]
uk

1 . L
N Y fukClpukCia ™ SR | AT AT
ian,jBm,uk

= X |AL ) miiAr (4)

ian,jBm

with the density matrix element is defined as
E f,uk B, ,u,kCla ,u,ke kR, R,,,) (5)

where f, is the band occupation number. The off-diagonal
element of the density matrix element, /" with jm # in, is
referred to as a bond order between two orbitals on a pair of
atoms.'® Because of the translational symmetry in periodic
systems, it is sufficient to consider the reduced single particle

density matrix py, i.e.,

po= 2 |AG) T AT (©)
ia,jB,m
Following Ivanic’s approach,'” the generalized intrinsic
oriented QUAMBOs may be obtained by maximizing the
hybridization-orientation sum (HOS)

!

HOS= X (E ls"fD’OD””) )

ia,jbm \ af

with a series of orthogonal transformations (D) among the
orbitals centered on each atom in the unit cell under the

constraint of translational symmetry between |A”) and |A” )
>’ in Eq. (7) implies i # j when m=0, so that the intra-atom
contributions are excluded. D/™ is an orthogonal transforma-
tion matrix for the orbitals at jth atom in mth unit cell.

The maximization of HOS can be achieved by two steps.
The first step is to perform a singular value decomposition of
the following Ng; X (Nyo X N=Ny;) rectangular matrix ()
for each atom i in the unit cell

235119-2



CHEMICAL BONDING ANALYSIS FOR SOLID-STATE...

FIG. 1. (Color online) Upper panel: 3D contour plot of the origi-
nal unrotated s-, py-, p-, py-like QUAMBOs for a carbon atom in
graphene. Lower panel: Oriented QUAMBOs for a carbon atom in
graphene with sp® hybridization.

0,_in0 i1l
mo=[mg - iyl ®)

where i runs over all the atoms in the unit cell except the ith
atom. NQ, is the total number of QUAMBOs associated with
atom i. )y’ is a Ny; X Ny; submatrix with elements /2. N
is the number of nearest neighbor unit cells taken into con-
sideration. The orthogonal matrix (U;,) composed of the left
singular vectors of matrix 7r;; can serve as a first try of ro-
tating the orbitals on atom i to maximize HOS. By transla-
tional symmetry, U;, is same as U,y. With the transformation
of U,,, the rotated orbitals would be

m>

A7) = ElA WU (a.a') (9)

and the density matrix becomes

NIm (UlO)TﬂJm(U/m)

The maximization of HOS is further achieved by a series
of 2 X 2 Jacobi rotations (/) between the every pair of orbit-
als on each atom iteratively. Considering an initial pair of
orbitals [A?, ) and |A7, ). the resultant orbitals under the Ja-
cobi rotatlon would be

(10)

|A ‘A >‘I11+|A1a Mor,

lLY]

‘Amz AT >J12+|Aza>‘]22 (11)

with
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FIG. 2. (Color online) Upper panel: 3D contour plot of the origi-
nal unrotated s-, p,-, p-, py-like QUAMBOs for a carbon atom in
zigzag SWCT (6,0). Lower panel: Oriented QUAMBOs for a car-
bon atom in zigzag SWCT (6,0) with sp>-type hybridization.

J (cos v —sin y)
“\siny cosy /)’
AT ) and AT ,) would undergo

the same rotation. Let the imtlal and resultant density matrix
element be 70" and 7% The relevant part of HOS which
will change accordingly is

(12)

By translational symmetry,

_ S By s (wpm) v S (A
Jsmvp m#0,00"
; 4
.S (2 T T+ 2 n{ggvfku)
j.mupB
+ > (2 ﬁg’f"JkUka ') =2 (Puy,
m#0,0v" \ kk’ klpg
k [7 ’ /
+ Pklpq)‘]klpli E Pklpq Jklpq‘]k’[’p q' (1 3)
kipg.k'l'p'q'
=" implies j#i if m=0 and B#aq, if j=i

v,k,l,p,q,v" k" ,lI'",p'q"=1,2. The definitions of the short-

hand notations are

Pup= 3 T T Mok Mo (14)
j.m,B
’
Pklpq _ E ﬂ_/makﬂ_]ma,ﬂ_/mapﬂ_jma (15)
- i0p o o 0B >
Jm.B
Jklpq = 2 ka‘]lv‘]pv‘]qv (16)
v

and

TABLE I. A block of the single particle density matrix associated with a pair of nearest neighbor atoms in graphene. Left half is in the
original unrotated QUAMBO representation, and the right half is for the oriented QUAMBOs.

s Py p. Py (sp); (sp?)n P, (sp) i
s 0.05 -0.12 0.00 -0.07 (sp?), 0.36 ~0.05 0.00 ~0.05
Py 0.12 -0.24 0.00 -0.12 Py 0.05 ~0.01 0.00 0.01
p. 0.00 0.00 0.17 0.00 p. 0.00 0.00 0.17 0.00
P 0.07 -0.12 0.00 ~0.10 (P 0.05 0.01 0.00 ~0.01
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TABLE II. A block of the single particle density matrix associated with a pair of nearest neighbor atoms in SWCN (6,0). Left half is in
the original unrotated QUAMBO representation, and the right half is for the oriented QUAMBO:s.

m#0

o s Py p. Py g (sp?); (PP p. (sp?)m
s 0.05 -0.07 0.01 0.13 (sp); -0.01 0.05 -0.02 -0.01
Py 0.07 -0.10 0.00 0.13 (sp) -0.05 0.35 0.00 0.05
P 0.08 -0.06 0.13 0.10 P 0.02 0.00 0.16 0.00
Py -0.10 0.11 0.09 -0.20 (sp -0.01 -0.05 0.00 0.00
Pl = 2 el e o] ey 0D Pl - PR P 3P - P P

Because of the symmetry with index permutation in py,,.
Jiipq and p’,flliq” 7, HOS" can be reduced to

HOS*=Py+ P, cos 4y+ P, cos 8y+ P, sin 4y
+ P, sin 8y (18)

with the abbreviated notations defined as

1
= 5(24(1)““ + P 4 19P 111+ 30P 17 + 19P:
112 1121 1222 2221
+4Py 5+ 12P 7, — 12P 77, — 4P,
+48(Py1p + P'?2) +30P 15, + 18P} 13+ T2P 115,
2211 2222 112 1222 2221
+ 18P0+ 30P1125 = 12P 05 + 4P 55, + 12P15),
AP 24P+ P 4 1921 0P

+19P35%3), (19)

1
_ 111 1111 1122 2222
Po= 8(2(P1111+P )+ 3Py — 6P 1+ 3P
1122 1111 1122 1221
= 12(Pyipp+ P7) = 6P 15— 6P 13, = 24P 13,
211 _ o p2222 2222 1111 1122
—6P112 = 6P 155+ 2(Pyyyy + P77) + 3P 30y — 6P 535
2222
+3P%)%) (20)
1
_ b o 122 p2222 112 1121 1222
Po= 32(P1111_6P1111+ 1 — 4P = 12P 5+ 12P));
2221 _ g pllll 1122 1221 211 2202
+4P111,— 6P 10+ 6P 1155 + 24P 15 + 6P 15, — 6P11%,
112 1222 2201 112 plll] 1122
+12P 105 = 4P 555 — 12P 155, + 4Pyt + Poyyy — 6P
2222
+P3%)), (21)
P —1[3P“12—3 1222 g(p, 4 P12 L 3plllL, 3pl122
s1= 45 m P 1112 1112 1112
1221 2222 112 1222 2221 112
+3P 12+ 3P 1112+ 3P 12, = 3P 115, = 3P+ 3P 13
1222 111 1122, 2222, pl122
—4(Pyopp + P57) = 3(Pgpp + Piony + Py + Py
112, pl222
- Py + Pyl (22)

and

plin 1222 2221 112 _ pliil 1122
=3P+ 3P+ 3P0 = 3P 101 = P + 3P

p222 1122, plll2 _ pl22
Piaoy +3Pya1 + Poogy = Py (23)
Since HOS" is a periodic function of 7y in the range of
a T . . . . s
[-%.3), it is very easy to numerically locate the optimum 7y
which maximizes HOS". In practice, several cycles of these

consecutive Jacobi rotations are necessary to reach the maxi-
mum of HOS.

III. RESULTS

The generalized I0-QUAMBO generation scheme was
applied to graphene system where the sp® hybridization for
carbon atom is well established. The upper panel in Fig. 1
shows the unrotated s-, p,-, p.-, p,-like QUAMBOs centered
on a carbon atom in graphene. The resultant oriented QUA-
MBOs are plotted in the lower panel. One can see that our
scheme automatically produces the sp? hybridization while
the p.-like QUAMBO remains unaffected.

The single particle density matrix elements associated
with a pair of nearest neighbor atoms in the representation of
original and oriented QUAMBOs are listed in Table I, where
the left(right) are obtained before(after) the orbital rotation.
The significant entries with a value larger than 0.10 are high-
lighted. It is clear that the number of the significant entries of
the matrix in terms of oriented QUAMBOs is much reduced
relative to the original one, which confirms that the density
matrix is greatly simplified in the representation of the ori-
ented QUAMBOs. The bond order between p.-like and
non-p_-like orbitals is zero, indicating that p,-derived bands
(7,7 bands) are decoupled from the non-p.-derived bands,
which is a result of the Dg symmetry.

While the ideal sp? hybrid orbitals exist in the highly
symmetric graphene system, physically the hybrid orbitals
should not be very sensitive to the local symmetry. When a
system is distorted in some reasonable range, the hybrid or-
bitals are expected to remain with some deformations which
manifest the effect of the structural deviation from the local
symmetry on the electronic structure. A good example for
this testing case is the single wall carbon nanotube (SWCN)
with small radius. We applied our method to zigzag SWCT
(6,0) where the curvature effect on the electronic structure
has been well established.?’ The lower panel of Fig. 2 shows
the 3D contour plot of the IO-QUAMBOs for a carbon atom
in the SWCT. The original unrotated QUAMBOs are also
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FIG. 3. (Color online) sp3 hybrid orbitals of two Al atoms in the
pure Al layer (left two) and d,, orbital of V atom (right one). The
four sp® hybrid orbitals (other two symmetric ones not shown) and
one d,, orbital will form bonding and antibonding states.

shown in the upper panel of Fig. 2 for comparison. The cur-
vature of the geometry results in the asymmetric lobes of the
third orbital which corresponds to the p_-like orbital in the
graphene. The other three orbitals remain clear sp>-type hy-
bridization similar to that in graphene. The misorientation of
the original orbitals comes from the fact that the nearest
neighbors of the atom are not exactly located in the axis
plane generally. The physically reasonable orientation and
hybridization of the orbitals are automatically obtained by
our generalized orbital rotation scheme.

The curvature effect can be further studied by examining
the single particle density matrix, a block of which is listed
in Table II for a pair of nearest neighbor atoms. One can see
that the bond order between p,-like orbital and some
non-p_-like orbital is not zero as shown by the slanted matrix
elements. As a result, p_-derived bands (7, 77" bands) and the
non-p_-derived bands become coupled.

To further show that our method for chemical bonding
analysis performs well even for complex structures, we ap-
plied it to Al3V system, where a combination of PAW
method and TB-LMTO method and sophisticated point
group symmetry analysis have been used to reveal the cova-
lent bonding nature.® Our orbital orientation scheme auto-
matically generates the sp® hybridization of Al atom in the
pure Al layers as shown in Fig. 3. Single particle density
matrix also shows that the bond order between the V-d,,
orbital and the adjacent Al-sp® hybrid orbital is dominant.
Thus V-d,,, orbital and the four nearest Al-sp® hybrid orbitals
are expected to form bonding and antibonding states. Figure
4 shows the differential projected density of states (PDOS)
on bonding and antibonding combinations of the automati-
cally generated V-d,, and Al-sp® orbitals in panel C. Such
defined PDOS is equivalent to the differential COOP by
Hoffmann.® The bonding state is dominant below Fermi-
level, while the antibonding state turns to be the major con-
tribution above the Fermi-level in the PDOS. Hence it shows
unambiguously a bonding-antibonding characteristics be-
tween these orbitals, in agreement with Ref. 6. Figure 4
shows that the QUAMBO-based tight-binding approach re-
produces the density of states from DFT calculations up to 4
eV above Fermi level in panel A, which justifies the employ-
ment of QUAMBOs to perform bonding-antibonding analy-
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FIG. 4. (Color online) (a) Comparison between the total density
of states obtained from DFT (circle) and that from ab initio
QUAMBO-based tight-binding approach (line). (b) Density of
states projected on d, orbital of V atom (straight line) and one sp;
hybrid orbital of Al atom in the pure Al layer (dotted line). (c)
Density of states projected on the bonding (thin straight line) and
antibonding (thin dotted line) combinations of orbitals and their
difference (thick line).

sis. The PDOS on V-d,, and Al-sp? are also shown in panel
B of Fig. 3 for reference. A pseudogap around Fermi level in
both PDOS might be an indication of covalent bonding char-
acteristics. We have also examined the other symmetrically
inequivalent oriented orbitals and found that they generally
do not have a clear hybridization form. The corresponding
single particle density matrix does not exhibit any clear
dominant bonding either. This implies that the shape of the
intrinsic oriented-orbital already conveys some information
on the chemical bonding nature.

IV. CONCLUSION

A generalized orbital rotation scheme based on maximiz-
ing the sum of the interatomic orbital bond orders has been
developed. The usefulness and generality of the scheme for
chemical bonding analysis in solid-state systems has been
illustrated by applications to graphene, carbon nanotube and
ALV systems. The hybrid orbitals can be automatically gen-
erated without using local symmetry analysis, and the chemi-
cal bonding nature can also be identified by examining the
single particle density matrix and projected density of states
thereafter. Since QUAMBOSs can be obtained in the Bloch
space within a projection-based approach, our method pro-
vides a general basis-independent way to perform chemical
bonding analysis for ab initio electronic structure calcula-
tions.

ACKNOWLEDGMENTS

Work at the Ames laboratory was supported by the U.S.
Department of Energy, Office of Basic Energy Science, in-
cluding a grant of computer time at the National Energy
Research Supercomputing Center (NERSC) at the Lawrence
Berkeley National Laboratory under Contract No. DE-ACO02-
07CH11358.

235119-5



YAO, WANG, AND HO

'P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964);
W. Kohn and L. J. Sham, ibid. 140, A1133 (1965).

2R. Hoffmann, J. Phys.: Condens. Matter 5, Al (1993).

3R. Hoffmann, Rev. Mod. Phys. 60, 601 (1988).

4R. Hoffmann, Solids and Surfaces—A Chemist’s View of Binding
in Extended Structures (VCH, New York, 1988).

50. K. Andersen, T. Saha-Dasgupta, R. W. Tank, C. Arcangeli,
O. Jepsen, and G. Krier, Lect. Notes Phys. 535, 3 (2000).

M. Krajéi and J. Hafner, J. Phys.: Condens. Matter 14, 1865
(2002).

7M. Kraj¢l and J. Hafner, J. Phys.: Condens. Matter 14, 5755
(2002).

8G. B. Bachelet, D. R. Hamann, and M. Schliiter, Phys. Rev. B
26, 4199 (1982).

°D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

10p E. Blochl, Phys. Rev. B 50, 17953 (1994).

D, Sanchez-Portal, E. Artacho, and J. M. Soler, Solid State Com-

PHYSICAL REVIEW B 81, 235119 (2010)

mun. 95, 685 (1995).

2w. C. Lu, C. Z. Wang, T. L. Chan, K. Ruedenberg, and K. M.
Ho, Phys. Rev. B 70, 041101(R) (2004).

3T, L. Chan, Y. X. Yao, C. Z. Wang, W. C. Lu, J. Li, X. F. Qian,
S. Yip, and K. M. Ho, Phys. Rev. B 76, 205119 (2007).

UX F Qian, J. Li, L. Qi, C. Z. Wang, T. L. Chan, Y. X. Yao, K. M.
Ho, and S. Yip, Phys. Rev. B 78, 245112 (2008).

5Y. X. Yao, C. Z. Wang, G. P. Zhang, M. Ji, and K. M. Ho, I.
Phys.: Condens. Matter 21, 235501 (2009).

1N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).

171, Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65,
035109 (2001).

18], N. Murrell, J. Chem. Phys. 32, 767 (1960).

9], Ivanic and K. Ruedenberg, Theor. Chem. Acc. 120, 281
(2008); 120, 295 (2008).

20X Blase, Lorin X. Benedict, Eric L. Shirley, and Steven G.
Louie, Phys. Rev. Lett. 72, 1878 (1994).

235119-6


http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1088/0953-8984/5/33A/001
http://dx.doi.org/10.1103/RevModPhys.60.601
http://dx.doi.org/10.1007/3-540-46437-9_1
http://dx.doi.org/10.1088/0953-8984/14/8/314
http://dx.doi.org/10.1088/0953-8984/14/8/314
http://dx.doi.org/10.1088/0953-8984/14/23/309
http://dx.doi.org/10.1088/0953-8984/14/23/309
http://dx.doi.org/10.1103/PhysRevB.26.4199
http://dx.doi.org/10.1103/PhysRevB.26.4199
http://dx.doi.org/10.1103/PhysRevB.41.7892
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1016/0038-1098(95)00341-X
http://dx.doi.org/10.1016/0038-1098(95)00341-X
http://dx.doi.org/10.1103/PhysRevB.70.041101
http://dx.doi.org/10.1103/PhysRevB.76.205119
http://dx.doi.org/10.1103/PhysRevB.78.245112
http://dx.doi.org/10.1088/0953-8984/21/23/235501
http://dx.doi.org/10.1088/0953-8984/21/23/235501
http://dx.doi.org/10.1103/PhysRevB.56.12847
http://dx.doi.org/10.1103/PhysRevB.65.035109
http://dx.doi.org/10.1103/PhysRevB.65.035109
http://dx.doi.org/10.1063/1.1730797
http://dx.doi.org/10.1007/s00214-007-0308-4
http://dx.doi.org/10.1007/s00214-007-0308-4
http://dx.doi.org/10.1103/PhysRevLett.72.1878

